One of my hobbies lately has been to get either RNA seq or microarray data from GEO and do quick analyses. Not only is this fun, I can find good examples to use for teaching biology.
One of these fun examples comes from some Arabidopsis data. In this experiment, some poor little seedlings were taken out of their happy semi-liquid culture tubes and allowed to dry out. This simulated drought situation isn't exactly dust bowls and hollow-eyed farmers, but the plants don't know that and most likely respond in a similar way. ... Read more
For those of you who may have been wondering where I've been, these past few weeks have seen me grading final projects, writing a chapter on analyzing Next Gen DNA sequencing data for the Current Protocols series, and flying back and forth between Seattle and various meetings elsewhere in the U.S. It will probably take years of bike commuting to make up for my carbon credits, but most meetings I attend don't have viable alternatives in venues like Second Life or World of Warcraft. Anyway, as I sit writing on an airplane, I think I could revise the title for Dr. Seuss' famous book to "Oh the ... Read more
A crystalline botanical fashion show.
Awhile back Chemical & Engineering News published a fascinating article called "The Secret Life of Plant Crystals" with some wonderful photos of calcium oxalate crystals. Special cells (called "idioblasts") produce these crystals, with shapes that are unique to each type of plant.
Reposted for the holiday.
Even though 75% of flowering plants make these crystals, no one knows why ... Read more
This the third part of case study where we see what happens when high school students clone and sequence genomic plant DNA. In this last part, we use the results from an automated comparison program to determine if the students cloned any genes at all and, if so, which genes were cloned. (You can also read part I and part II.) Did they clone or not clone? That is the question. ... Read more
This the second part of three part case study where we see what happens when high school students clone and sequence genomic plant DNA. In this part, we do a bit of forensics to see how well their sequencing worked and to see if we can anything that could help them improve their results the next time they sequence.
How well did the sequencing work?
Anyone who sequences DNA needs to be aware of two kinds of problems that afflict their results. We can divide these into two ... Read more
Dave Robinson and Joann Lau from Bellarmine College in Kentucky are going to be describing their student project in a free webinar next Friday, May 16th. Their students clone GAPDH (Glyceraldehyde 3-Phosphate Dehydrogenase) genes from new plants, assemble the DNA sequences, and submit them to the NCBI. Here's an example.
Plus, since GAPDH is a highly conserved, it's a great model for looking at ... Read more
The first research assignment for our Alaska NSF Chautauqua course has been posted. Your task is to find a wound-inducible plant gene, learn something about it, and post a description in the comment section. We've already had one excellent answer, but I know there are at least 54 wound- ... Read more
An introduction to our Alaskan NSF Chautauqua course and a pre-course assignment.
I don't know how well this will work, but I thought it might be interesting this year to experiment with blogging about our course and sharing some of our experiences with the rest of the world. Here's your chance readers, if you'd like to do some of the assignments, you are very welcome to follow along and give it a try.
tags:
I'm not likely to get all the assignments or course info posted on-line, but since we have some constraints with photocopying, we also ... Read more
How does grass grow in the extremely hot soils of Yellowstone National Park? The quest continues.
Read part I, part II, part III, and part IV to see how we got here.
And read onward ... Read more